

Transfert Radiatif dans une atmosphère nuageuse 3D : modélisation et implications pour la télédétection des nuages

Céline Cornet

Laboratoire d'Optique Atmosphérique

Contexte (1/3)

Dans un contexte de changement climatique, rôles des nuages ?

Paramètres clés d'origine anthropique :

Augmentation de la température globale (GES)

Variation de la quantité d'aérosols

Rétroactions nuageuses sur le bilan radiatif :

① Rétroaction vraisemblablement > 0

2 Entre 1750 et 2010, forçage radiatif semble < 0

Nuages haut = effet de serre = effet radiatif positif

Nuages bas = effet parasol = effet radiatif négatif

Globalement, les nuages ont un effet radiatif négatif **= -20W/m**² (CERES, Loeb et al. 2009)

Incertitudes importantes (GIEC, 2013)

- Evolution de la couverture nuageuse et de ses caractéristiques
- Effets indirects des aérosols

Contexte (2/3)

Observations des nuages par télédétection

<u>Globalement</u>

Ex : Mission A-Train: <u>Radiomètre passifs:</u> POLDER/PARASOL: (2005-13) MODIS/AQUA: (2002-) IIR/CALIPSO: (2006-) <u>Radiomètres actifs</u> CALIOP/CALIPSO (2006-) CPR/CLOUDSAT (2006-)

Dans un futur proche: Mission EarthCARE, Mission 3MI

<u>Régionalement</u>, pour étudier les processus dynamiques ou interactions aérosols-nuages dans des zones clés: Ouest Afrique, Sud Asie, zone d'alizés, Arctique...

Ex: campagne AEROCLO-SA pendant Eté 2017

Contexte (2/3)

Observations des nuages par télédétection

Radiomètre passifs:

Quantités intégrées : COT, LWP ou flux montant où niveaux supérieures : Reff

=> Couverture globale 2D selon horizontal

Radiomètres actifs CALIOP/CALIPSO; CPR/CLOUDSAT

ATLID/Earthcare; CPR/Earthcare

Profils verticaux : positionnement des couches d'aérosols/nuages, profils d'extinction

= > Couverture globale 2D selon vertical

⇒ Globalement: structures 3D moyennes des nuages

⇒ Localement : Reconstruction 3D, ex Barker et al., 2011 (Lidar + Radar + MODIS ou MSI)

= > Reconstruction 3D

Sans Transfert Radiatif 3D (TR3D)

Effets des hétérogénéités nuageuses - Observation (1/5)

Restitution de paramètres nuageux par télédétection: **Hypothèse du nuage homogène, plan-parallèle et infini**

Nuages observés par MISR/TERRA (275m de résolution):

MISR

Effets des hétérogénéités nuageuses - Observation (2/5)

Erreurs dépendantes de la taille du pixel d'observation (Davis et al., 1997; Zinner et Mayer, 2006)

+ Effets de surbrillance et d'ombrage (Loeb et Davies, 1996, 1997, 1998; Varnai et Davies, 1999)

Effets des hétérogénéités nuageuses - Observation (3/5)

Biais plan-parallèle = Forme en cloche

Effets des hétérogénéités nuageuses - Observation (4/5)

Effets des hétérogénéités nuageuses - Observation (5/5)

Epaisseur optique (COT) directionnelle restituée par POLDER pour deux classes d'angles solaires

Zeng S., C. Cornet, F. Parol, J. Riedi, and F. Thieuleux, 2012, ACP

Simulation des effets des hétérogénéités nuageuses sur les paramètres nuages inversés

I. Méthodologie

- II. Radiomètre passif : ex POLDER/PARASOL (multi-angulaire + polarisation)
 Effets sur épaisseur optique et albédo des nuages et l'albedo
 Effets sur la restitution des aérosols au dessus des nuages
- I. Radiomètre actif : ex CALIOP/CALIPSO Effets

Génération d'un champ nuageux (100m) 3DCLOUD - *Szczap et al.,* 2014 or LES model (RAMS)

3D RT

Génération d'un champ nuageux (100m) 3DCLOUD - *Szczap et al.,* 2014 or LES model (RAMS)

Simulation des luminances 3DMPCOL - *Cornet et al.,* 2010

×(km)

×(km)

Génération d'un champ nuageux (100m) 3DCLOUD - *Szczap et al.,* 2014 or LES model (RAMS)

Simulation des luminances 3DMPCOL - *Cornet et al., 2010*

Génération d'un champ nuageux (100m) 3DCLOUD - *Szczap et al.,* 2014 or LES model (RAMS)

Simulation des luminances 3DMPCOL - *Cornet et al., 2010*

Génération de champs nuageux 3D

- Modèle type LES (Large Eddy Simulation)
- Modèle 3DCLOUD: Szczap et al., 2014

Combine approche physique et stochastique

- 1. Résolution très simplifiée des équations de Navier-Stokes et thermodynamiques
- 2. Ajustement des propriétés statistiques du champs nuageux (pente -5/3, distribution)

Entrée du modèle : taille/résolution du domaine, profils atmosphériques, épaisseurs optiques moyennes et paramètre d'hétérogénéité

Transfert radiatif atmosphérique 3D, Principe:

- Calcul du vecteur de Stokes (I,Q,U,V) et des flux en réflectances et transmittances
- Suivi des photons à travers un milieu tridimensionnel
- Méthode d'estimation locale (Marshuk, 1980; Marshak et Davis; 2005, Mayer, 2009)

Cornet C., et al., 2010, JQSRT; Fauchez, T. et al., , 2014, ACP

Génération d'un champ nuageux (100m) 3DCLOUD - *Szczap et al.,* 2014 or LES model (RAMS)

Simulation des luminances 3DMPCOL - *Cornet et al., 2010*

Simulation des effets des hétérogénéités nuageuses sur les paramètres nuages inversés

- I. Méthodologie
- II. Radiomètre passif : ex POLDER/PARASOL (multi-angulaire + polarisation)
 Effets sur épaisseur optique et albédo des nuages
 Effets sur la restitution des aérosols au dessus des nuages
- III. Radiomètre actif : ex CALIOP/CALIPSO

Simulation: Effets sur l'épaisseur optique restituée

Algorithme POLDER : R (670/865nm) -- > COT - Buriez et al., 1997

Simulation: Effets sur l'albédo du nuage restitué

0.2

0.15

Albédo du nuage: Albédo modélisé suivant hypothèse 1D: Mesures de Luminances $R(\theta s; \theta v; \varphi v) \rightarrow$ COT \rightarrow Flux $F(\theta s)$

Différence relative (%) entre albédo restitué avec algorithme opérationnel (1D) et l'albédo simulé avec modèle RT 3D (COT =10)

Différence relative (%)	θs=20°	Θs=40°	Θs=60°
Nuage plat (%)	2.09	-2.80	2.35
Nuage bosselé (%)	-2.94	0.87	5.78

- Différences faible pour le nuage plat
- Différence plus importante pour nuage bosselé Θs=20° => légère sous-estimation ≈ 3% Θs=60° => surestimation ≈ 6%

Effets sur restitution aérosols au dessus des nuages

Luminances polarisées multi-angulaires

Présence d'aérosols au dessus des nuages = diminution luminance dans l'arc principal $(\Theta \approx 140^\circ)$ et augmentation en diffusion avant $(\Theta < 120^\circ)$ = effets 3D sans aérosol

Algorithme aérosols au dessus des nuages (Waquet et al., 2013)

	AOT670	AOT865	Angstrom
1D	0.28	0.16	2.20
3D	0.46	0.28	1.95

Simulation des effets des hétérogénéités nuageuses sur les paramètres nuages inversés

I. Méthodologie

II. Radiomètre passif : ex POLDER/PARASOL (multi-angulaire + polarisation)
 Effets sur épaisseur optique et albédo des nuages et l'albedo
 Effets sur la restitution des aérosols au dessus des nuages

III. Radiomètre actif : ex CALIOP/CALIPSO Effets

Simulation - Effets hétérogénéités sur Lidar (1/2)

Problématique de l'interprétation de la puissance rétrodiffusée et mesurée par système lidar ou radar en régime de diffusion multiple

Travaux effectués au LaMP: Alkasem A., Mioche G., Szczap F., Shcherbakov V.

Simulation - Effets hétérogénéités sur Lidar (2/2)

Synthèse des effets des hétérogénéités

Paramètre restitué ou mesuré	MODIS	POLDER	IIR	CALIOP
Epaisseur optique	 ± 20% (Varnai and Marshak, 2001) + 40%/Nadir (Varnai and Marshak, 2007) - 10% (Kato and Marshak, 2009) - 5% (Zinner and Mayer, 2006) ± 20% (Fauchez et al., 2016) 	-40% à -20 % (Cornet et al., 2013) -70% à+43 % (Cornet et al., en prep.)	-20% (Fauchez et al. <i>,</i> 2015)	-10% à -20 % (Alkasem et al., soumis, JQSRT)
Rayon effectif	+ 60% (Marshak et al., 2006) + 5 % (Zinner and Mayer, 2006) + 0% à 50% (Fauchez et al., 2016)	0% (Cornet et al., 2013; en prep.)	+ 50 % (Fauchez et al. <i>,</i> 2015)	
Rapport de dépolarisation				- 30%

Biais (%) dus aux hétérogénéités des nuages sur leurs paramètres restitués (Application A-train)

Vers une prise en compte des hétérogénéités 3D nuageuses ?

Effets des hétérogénéités peuvent être importants pour certains types de nuages

⇒ Nécessité de développer des méthodes pour prendre en compte (corriger) ces effets, selon échelle d'observation et type de mesures:

<u>Mesures satellites</u>: échelle ≈ km (biais parallèle + effets surbrillance et d'ombrage) mesures continues donc nécessite méthodes rapides

→ correction, paramétrisation des effets (info sous-pixels, multi-angulaire)
 Mesures aéroportées: échelle ≈ 10s m (non indépendance des colonnes + effets surbrillance et ombrage)

Mesures ponctuelles donc moins contraint par le temps

➔ Possibilité de TR3D mais quelle méthode inverse ?

Radiomètre aéroporté OSIRIS

<u>Avantages</u>: résolution spatiale 20m(visible) et 60m (nir) => Étude de processus fins comme **interactions aérosols nuages**

Luminance totale à 865nm

Luminance polarisée RGB

Variabilité du sommet des nuages

Difficulté : colonnes nuageuses ne sont pas indépendantes

- ⇒ Nécessité de développer une méthode d'inversion de l'ensemble du champ nuageux :
- Méthode type GRASP (Dubovik et al., 2011)
- Méthode de l'adjoint (Martin et al., 2014)
- Méthode tomographique (Levis et al., 2015)

Projet PNTS 2017-2020 Thèse de Christian Matar (2015-2018)

Inversion de champs nuageux (OSIRIS)

Martin W, Cairns B., Bal G., 2014:

Adjoint methods for adjusting three-dimensional atmosphere and surface properties to fit multi-angle/multi-pixel polarimetric measurements

Plusieurs étapes :

1.Inversion 1D - > COT1D

- 2. Simulation TR 3D avec COT1D
- 3. Calculs des différences:

 $\Delta R=R3D-R1D$

4. Simulation TR3D avec ∆R comme source → adjoint (schéma)

- 5. Ajustement des paramètres nuageux
- 6. Retour à l'étape 3 si nécessaire

Projet PNTS 2017-2020 Thèse de Christian Matar (2015-2018)

Merci pour votre attention

Biais plan-parallèle dû à l'hétérogénéité sous pixel

Effets sur les lumínances polarísées (1/3)

- At 100m, effets d'ombrages et de surbrillances
 Ipol3D > Ipol1D (max)=0.0537 => modèle 1D ne permet pas d'obtenir les valeurs en jaune
- En moyenne (10km), biais plan-parallèle et les effets d'ombre diminue l'effet de polarisation

Effets sur les lumínances polarisées (2/3)

- \Rightarrow Zones d'ombre diminuent la polarisation du nuage (negative)
- \Rightarrow A 100m, valeurs supérieures à celles obtenues avec l'hypothèse 1D

Effets sur les lumínances polarísées (3/3)

Inversion du **rayon effectif** (Reff) et de **variance effective** (Veff) d'une distribution lognormal Utilise **les méthodes d'estimation optimale -** *Bréon et Goloub, 1998; C-Labonnote et al. IRS 2012*

- Les erreurs sur Reff et Veff sont très faibles car position de l'arc non modifiée par effets 3D
- Différences importantes pour la pression du sommet (Pression Rayleigh): ΔH=910m

Effets des hétérogénéités dans VIR (1/5)

Etude dans le cadre de IIR/CALIPSO, applicable à MODIS:

- Mon-angulaire : visée Nadir
- 3 Bandes spectrales (8.65μm, 10.60μm et 12.05μm)
- Résolution : 1kmx1km

Inversion des paramètres nuageux à partir de $\Delta B_T = f(B_T)$

- Emissivités effectives à 8.65μm, 10.60μm et 12.05μm
- **Epaisseurs optiques effectives** à 8.65μm, 10.60μm et 12.05μm
- Indices microphysiques (non étudiés)
- Diamètres effectifs

Effets des hétérogénéités dans l'IR (2/5)

Thèse Thomas Fauchez (2010-2013)

Effets des hétérogénéités dans l'IR (3/5)

Cirrus généré avec 3DCLOUD à partir de mesures de la campagne aéroportée CIRCLE 2 (25 may, 2007): *Mioche et al., 2010; Fauchez et al., 2014*

Effets des hétérogénéítés dans l'IR (4/5)

Propriétés microphysiques homogènes : Deff = 9.95 μm $\Delta BT_{1km} = BT3D_{1km} - BT1D_{1km}$

- ΔBT_{1km} très corrélé avec $\sigma_{\tau_{1km}}$.
- La distribution sous-pixel de l'hétérogénéité intervient peu

Fauchez, T., C. Cornet, P. Dubuisson, F. Szczap and T. Rosambert, 2014, ACP

Effets des hétérogénéités dans l'IR (5/5)

Fauchez T., P. Dubuisson, C. Cornet, F. Szczap, A. Garnier, J. Pelon, and K. Meyer, 2015, AMT

Méthode ítératíve: nuage ísolé (1/2)

Nuage convectif isolé dans le pacifique vu par MISR

Reconstruction de l'enveloppe du nuage par stéréographie

Cornet C. et Davies R., 2008, JGR

Méthode ítératíve: nuage ísolé (2/2)

<u>Méthode itérative:</u> <u>Avantage</u> : modèle de nuage ajustable <u>Inconvénient:</u> Très long en temps de calcul Ajustement itératif du coefficient d'extinction => Épaisseur optique

En moyenne, COT 3D=[35-58] ; COT 1D=14 Localement, 1D sous-estimation importante

Cornet C. et Davies R., 2008, JGR

Use Rpol to retrieve size distribution (Reff, Veff)

Assume log-normal distribution **with effective radius** (Reff) and **effective variance** (Veff) Use **an optimal estimation method** (Rodgers, 2000) (Bréon et Goloub, 1998; C-Labonnote et al. IRS 2012)

Polarized radiances for different effective radius => Use angular position and size of the cloudbow to retrieve Reff Polarized radiances for different effective variance

=> Use angular position and size of the secondary bows to retrieve Veff

Bords des nuages : effets de **surbrillance** et d'**ombrage** pour incidence solaire oblique

Vers la restitution du profil vertical (3MI)

Etude du contenu en information Rodgers (2000)

	CGT	СТОР	СОТ	LWP	р
Lvis totale	0.09	0.02	0.8	0.05	0
Lvis polarisée	0.64	0.2	0	0.04	0.03
Lswir totale	0.02	0.06	0.04	0.82	0.02
Lswir polarisée	0	0	0.05	0.05	0.9
Aband ratio	0.024	0.7	0.05	0.04	0.01
total	1	1	1	1	1

Thèse de Guillaume Merlin (2013-2016)